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SUMMARY

A description of the finite element impliementation of Robinson's unified
viscoplastic model into the General Purpose Finite Element Program - MARC, is
presented. To demonstrate its application, the implementation is applied to
some uniaxial and multiaxial problems. A comparison of the results for the
mulitiaxial problem of a thick internally pressurized cylinder, obtained using
the finite element implementation and an analytical solution, is also pre-
sented. Excellent agreement obtained confirms the correct finite element
implementation of Robinson's model.

INTRODUCTION

Modern technological development in aerospace, nuclear, and many other
industries has resulted in increasing use of materials at unprecedentedly
higher temperatures. At high temperatures there is an increased propensity
for inelastic deformation mechanisms of creep and plasticity. Realistic and
rational designs of structural components operating at such elevated tempera-
tures must rely on accurate constitutive model descriptions of these inelastic
deformations in structural materials.

Conventional constitutive models which treat creep and plastic strains as
separate noninteracting entities are incapable of dealing with observed creep-
plasticity interactions. The recent years have witnessed, therefore, a con-
certed effort by numerous researchers to develop constitutive models where the
tnelastic strain is not separated artifictally into time-independent plastic
and time-dependent creep components. These models - called the unified visco-
plastic models - treat all inelastic strain (plasticity, creep, relaxation,
etc.) as a unified and time dependent quantity and thus, automatically inciude
any interactions. A good general overview of numerous viscoplastic models
developed in recent years and their predictive capabilities is given by Walker
(ref. 1) and Lindholm et al. (ref. 2).

Unified viscoplastic models express the inelastic strain rates as a func-
tion of the current values of stress, temperature, and certain internal state
variables. The models also include evolution (or growth) laws, whereby the
rates of internal state variables are connected to the current values of these
variables, stress, and temperature. The viscoplastic models proposed by dif-
ferent investigators employ different functional relations. Krieg (ref. 3)
has, however, shown that most of these models possess the same basic skeletal
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framework which generally includes two state variables - one scalar and the
other tensorial - to account for isotropic and kinematic hardening,
respectively.

In order to make these models more realistic, an attempt is made to
incorporate as much material science as possible into the continuum model. As
a result the mathematical structure of these models is, in general, very com-
plex. Not only is the system of constitutive equations associated with these
unified models highly nonlinear but also mathematically "stiff." Analytical
tools commonly used for the solution of classical plasticity or creep problems
are therefore rendered inapplicable for use with unified models. Many practi-
cal problems - such as those arising in the analysis of hot gas-path components
of gas turbine engines and rocket engines for reusable space propulsion; sys-
tems - involve complex geometries as well as complex thermomechanical loading
histories. For application of viscoplastic models to such intricate problems
it is necessary that these models be implemented in General Purpose Fintte
Element Codes such as MARC (ref. 4).

During the last several years the NASA Lewis Research Center has mounted
an extensive in-house and external effort to implement some of the more com-
monly used viscoplastic models into the Finite Element Code - MARC. The visco-
plastic models due to Walker (ref. 1) and Bodner (ref. 5) have already been
implemented into the MARC and results of some nonlinear structural analyses
using these impiementations are available in references 1 and 6. As a contin-
ued effort in this direction, the task of implementing Robinson's model
(ref. 7) into MARC was undertaken. This report provides a brief description
of this implementation and also presents the solutions of some illustrative
problems.

ROBINSON'S MODEL

Robinson's model (ref. 7) is based on the concept of flow potential. The
flow and growth laws for the internal variables are derived from this flow
potential. The material behavior is elastic for all the stress states within
the flow potential, and it is viscoplastic for all the stress states outside
the flow potential. Assuming the displacements (and strains) to be smali, the

total strain rate, 51j is written as the sum of elastic, éfg, and inelastic

(including creep, plasticity, relaxation, etc.), E}g, components. In symbols
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The material is assumed to be isotropic and Hooke's law is used to relate the
elastic strain rate ¢33 to the stress rate, oy 1.e.
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where £ 1is the Young's modulus, v 1is the Poisson's ratio, and &, is

the Kronecker delta. following the Cartesian tensor notations, the repeated
subscripts in equation (2) (and elsewhere) imply summation.




The deviatoric stress, S43, is defined as:

]

S1j = a13 -3 dkkéﬁj . (3)

The growth law governing the evolution of internal state variabie, i3,
(which accounts for the kinematic hardening), is given by:

a1y = hlagi)ery - rlogoy - (4)

The form of this law 1s based on the well known Bailey-Orowan theory
(ref. 8), which states that the high temperature deformation of materials takes
place under the influence of two competing mechanisms denoted by the two terms
in equation (4). The first term denotes the hardening process with accumula-
ted deformation and the second term, a recovery or softening process proceed-
ing with time. Under the steady-state conditions, these two mechanisms balance

each other and consequently, &13 = 0.

The flow law governing the inelastic strain rate, ;13, is written as:

f(F) .F>0 and S >0 ,
~ ein EU, 1j21j

2u ¢ = (5)
R 0; F<0 or F>0 and 5132:13 <0

In equation (5),2:13 denotes the effective stress, which is defined as:
Y4y = S43 - o4y - (6)

Particular forms for the functions f(F), h(ak]), and r(ag)) are taken as:

n
f(r)=\/§_ . (7)
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where

J
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The parameters u, H, n, m, B, and G, are temperature independent
constants. Effects of temperature are incorporated in the model through the
temperature-dependent constants u and R wusing the fo]}owing retations:

w=uexp (-67) ,

no

and
R = 9.0x10-8 exp (6p) . (12)
In which
0. = (23.8 6 - 2635) [=—— 1-) (13)
17 : - (81] e/
and
0. < 40 000 (—l* - l) (14)
2 T 811 "o/ -

Here, © denotes the absolute temperature in Kelvin (K). The scalar
state variable « 1in the above equations denotes the scalar threshold

(Bingham) stress. Inelastic strain rate, 222 , vanishes for all the values of

second tnvartant J; below «. The state variable « accounts for the
isotropic hardening (or softening). Following Robinson (ref. 7), and for the
material considered herein (2-1/4 Cr-1 Mo steel), « has been taken as a
temperature-independent constant. But, depending on the material, equations
for the evolution of the isotropic state variable and for its dependence on
temperature, may be necessary. An evolutionary equation for « may be found
in reference 9. The inequalities in equations (5) to (9) define boundaries
across which the flow law and growth law change form discontinuously.

DESCRIPTION OF MARC - PROGRAM

Constitutive models are most advantageous if they can be used on a prac-
tical scale for the solution of problems faced by industry. The viscoplastic
model developed by Robinson was therefore implemented into the General Purpose
Finite Element Program - MARC (ref. 4). The MARC - program employs




sophisticated integration algorithms and advanced finite element formulations,
and is specially tailored to fit the requirements of a nonlinear structural
analysis.

Robinson's model was implemented into MARC program by incorporating all
the material nonlinearity into an initial load vector and treating it as a
psuedo body force in finite element equilibrium equations. Since the consti-
tutive equations associated with the viscoplastic model are, in general,
“stiff," the subincrement technique is used to form the incremental constitu-
tive equations corresponding to the finite load increment.

The subincrement technique essentially consists of splitting the finite
load increment into a number of equal subincrements and integrating the con-
stitutive equations of viscoplastic models over small subincrements to obtain
an accurate representation of the incremental constitutive equations over the
finite load increment. The explicit Euler forward difference method (with a
self-adaptive integration strategy) was employed to integrate the constitutive
equations over the subincrements. The technique is found to work efficiently
and accurately, even for large finite element load increments, provided the
subincrements are small enough to preserve the stability of Euler forward
method. However, it is difficult for the user to select efficient subincre-
mental steps, and there is a considerable incentive to use as few subincrements
as possible without affecting the stability of constitutive differential equa-
tions associated with the model.

To familiarize the reader with i1ts operation, a brief introduction to
MARC - Program is appropriate. This introduction, taken from references 1 and
10, 1s presented in the following paragraphs.

"“The principal of virtual work may be used to generate the MARC nonlinear
equilibrium equations governing the incremental response of the structure to
an increment of load. 1In evaluating the noniinear structural response of a
component, the program assumes that the load history is divided into incre-
mentally applied loads. Each load step is sequentially analyzed as a linear
matrix problem using an appropriate stiffness matrix and load vector. Although
each load step uses 1inear matrix methods to solve the incremental equations,
the incremental equations themselves are nonlinear since the load vector will
depend on the displacement increment obtained in the solution of incremental
equilibrium equations.

The principle of virtual work may be written, for applied external point
loads P4, or displacement wuy, in the form:

}:f scio, dV = sulp, (15)
Rathe 1P

where the integral extends over the volume, V, of each finite element and the
summation sign extends to all the elements in the structure.

In equation (15) the virtual displacement vector &,4 is related to the
virtual strain vector &ey through the relationship

T T .7
¢, = B,.§ or 6e1 = sujB1j ’

i 13 ul (16)



where By s the strain displacement matrix and the superscript T denotes
Lransposilion. Since &y4 s an arbitrary virtual displacement vector,
equations (15) and (16) may be written in the form:

Z[VBIJOJ v =P, . (17)

This relation expresses the equilibrium of structure when the applied
load vector is .Py and the stress vector is oy. If an incremental load
APy is applied to the structure and the stress vector changes to oy + Aoy,
the relation expressing the equilibrium of the structure at the end of the
incremental load application may be written as:

Z[VBIj(oj b hoy) dV = Py v 8P (18)

Hence, the relation expressing the equilibrium of the structure during the
application of the incremental load vector APy 1is obtained from equations (17)

and (18) by subtraction in the form:

ZIVBIJ boy 4V - 4P, . . (19)

The MARC code allows the user to implement very general constitutive rela-
tionships into the program by means of the user subroutine HYPELA. Within this
subroutine, the user must specify the values of the elasticity matrix D1j
and the inelastic stress increment vector A¢3 1in the incremental vector
constitutive relationship:

Ao (Ae, - 8,0 AO) - A

1:D1j 3 3 i

The inelastic stress increment vector AZ4y is computed in HYPELA using the
constitutive relationships of the viscoplastic model.

(20)

In equation (20), « denotes the coefficient of thermal expansion and éj
is the vector Kronecker delta symbol,
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For the viscoplastic models, "the incremental inelastic stress vector Ay
depends in a highly nonlinear manner on the incremental strain vector Aejy.
Since Aey = 811 Byjy, the incremental inelastic stress vector Af4 depends
in a highly nonlinear manner on the nodal displacement vector 4yj, so that

ALY = AZ(Byj) -

Substitution of equation (2) into equation (19) produces the incremental
equilibrium equations for MARC in the form:

1 T
ZKU buy = AP, v Ry ¢ ZIVB’IJ ALy Vs vasijaja A0 dV (22)




where Kij 1s the elemental elastic stiffness matrix defined by the relation:

S
Kyy = fv31k0k13szj av . (23)

The vector ARy 1is the residual load correction vector or out-of-equilibrium
force vector from the preceding ioad increment:

AR, = P, - Z]vsijoj v (24)

which is added to the current increment in order to restore the structure to
equilibrium. The nonlinearity in the incremental equilibrium relationship,
defined in equation (22), arises because the inelastic stress increment vector
A(j depends nonlinearly on the displacement increment vector A4,4. Values of
D1j and AZjy appropriate to the current incremental load step are returned
to the main program by subroutine HYPELA and the incremental equilibrium rela-
tions in equation (22) are solved by successive iterations.

The solution of the incremental equilibrium equations in (22) is accom-
plished within the MARC code by the following algorithm. At the start of the
increment the user subroutine HYPELA is entered to determine the elasticity
matrix Dy and the incremental inelastic stress vector AZ3y. On entry to the
subroutine, the input consists of the strain increment vector Aey, the tem-
perature increment a®, the time increment At over which the incremental
external load vector APy 1is applied to the structure, and the values of
stress, strain, temperature and viscoplastic state variables at the beginning
of the increment. Since the incremental strain vector, Aey = By A“J’ can only
be accurately determined after the solution to the incremental equilibrium
relationship in equation (22) has ylelded the correct incremental solution vec-
tor Auq, the strain increment vector Aey 1initially used to generate the
inelastic stress increment vector 4¢3 must be estimated. The initial esti-
mate for Aey 1is assumed to be the value obtained for Aey 1in the preced-
ing increment. On exit from subroutine HYPELA the elasticity matrix D43 and
the estimated inelastic stress increment vector AZ4y are passed into the main
program. After the values of 014 and Acq are ogtained for each integra-
tion point in the structure, the incremental equilibrium relationship in
equation (22) is assembled and solved for the incremental node displacement

vector A4y3. The incremental strain vector, éey = B1j 8,4, s then computed
and compared with the initial guess for Aejy wused to generate the inelastic
incremental stress vector AZy. If this incremental strain vector is equal,

within a user specified tolerance, to the incremental strain vector used to
compute AZy 1in the assembly phase, the solution is assumed to have converged.
Otherwise, %he updated strain increment vector, obtained from the solution of
the equiltibrium relations in equation (22), is passed into subroutine HYPELA,
a new vector, aZy, s computed and the equilibrium equations resolved to

yield an improved value of Ayy and Aej. The process is repeated until

the value of vector Aey on the assembly phase is equal, within a user
specified tolerance, to the value of the vector Aejy on the solution phase.
After convergence is achieved, the temperature, stress vector, strain vector
and viscoplastic state variables are updated by adding the incremental values
generated during the current increment to the values of these variables at the
beginning of the increment. The program then passes on to the next load
increment where the process 1s repeated."



IMPLEMENTATION OF ROBINSON'S MODEL IN MARC

The MARC - Program provides the user a convenient way of implementing and
integrating the constitutive equations of Robinson's model through the user
subroutine HYPELA. The details of subroutine HYPELA may be found in ref-
erence 4. The subroutine HYPELA written for Robinson's model and the self-
adaptive integration scheme used in it, follow essentially the same structure
as given in reference 10 for Walker's model.

The discontinuous boundaries in Robinson's model should be smoothed to
factlitate numerical computations using the FEM. The smoothing is achieved by
defining a spline function P(x) on the interval (-1,1) as:

2
i]‘;vx_)_;_]SX<0

PO = { o5 0<x< (25)
2
15 x>

0 ; x < -1
The function F 1in equation (1) is then replaced by a function % defined as:
F-op (S1jz_1_1> <> (26)
W
1

where the angular brackets denote:

<x> = (27)

and the weighting function w] 1s to be selected by the user. The use of

equation (26) results in smoothing the discontinuity in E:n across the sur-
face, 51343 = 0, and also rids the flow law, equation (5), of inequalities.

The discontinuities in ojj are removed by first replacing the function
G by Gy, i.e.

G; G > 260
6, = gi+eo;e<2ao, (28)
4G
)
and then defining
S, ,a
6 - (G, - GO)P(_’i_l_L’L) v e, (29)
W
2




fquations (8) and (9) may now be rewritten as:

h - ggﬁ , (30)
G
and
m-B
r - RG . (31)

With these values of h and r, the growth law, equation (6), reduces to a
single expression with a smooth transition across the surface, Syjay43 = 0, in

the space and now contains no inequalities. The weighting function Wy s again
again to be selected by the user. The computations and results presented in

the following sections used:

Wy = Wp = 10-2 (ksi2) = 0.475 (MPa?)

NUMERICAL VALUES OF THE CONSTANTS

The numerical values of the parameters appearing in equations (1) to (14)
for the alloy 2-1/4 Cr-1 Mo steel were taken from Robinson and Swindeman,
(ref. 7). The values are:

w = 3.61x107 (hr)

n = 4

m = 7.73

B = 1.5 (32)
H = 1.37x10-4 (ksi/hr)

Go = 0.14

x = 0.82 (ksi)

The values of Young's modulus, £, and the Poisson's ratio, v are assumed
to be temperature dependent. The following polynomial expressions in temper-
ature taken from Sartory (ref. 11), are used to estimate the values of E
and wv:

E = 31100.0 - 13.59 T + 0.2505x10-2 T2 - 0.2007x10-13 73 (ksi) , (33)
and

v = 0.524 + 0.154x10-3 T - 0.126x10-6 T3 . (34)

Here, T denotes temperature in degree Farenheit.



APPLICATION TO PROBLEMS
Uniaxial Problems

Some jl1lustrative problems were solved to demonstrate the implementation
of Robinson's mode) into MARC through the subroutine HYPELA. The values of
constants listed in the preceding sections were utilized for these computa-
tions. The thermal and mechanical loadings used to generate the hysteresis
loops using MARC are shown in figure 1.

Figures 2 through 4 show the hysteresis loops generated by MARC using
Robinson's model. The loops shown in these figures are at strain rates of
0.0004, 0.004, and 0.04/min, respectively. The strain range is +0.2 percent
approximately. The cyclic mechanical loading used in generating the hystere-
sis loops 1s shown in figure 1(a) and the thermal loading is constant at
800 °F. These fiqures exhibit the results for two and one-quarter of a cycle.
Figure 5 summarizes the stablized hysteretic loops for the three strain rate
conditions.

The results for combined in-phase thermomechanical loading, shown in
figure 1(b), are depicted in figures 6 to 8. These figures show the hystere-
sis loops for the same strain-rates and strain range as mentioned above.

Figure 9 summarizes the stable hysteretic loops for this type of thermomechani-
cal loading. ‘

As a further example, the combined out-phase thermal and mechanical Toad-
ing shown in figure 1(c), was used to generate the hysteresis loops at strain
rates of 0.0004, 0.004, and 0.04/min, respectively. The strain range, as
before, 1s +0.2 percent. Figures 10 to 12 show the results of these calcula-
tions for two and a one-quarter of l1oading cycles. The stable hysteretic
loops for the three strain rates are plotted in figure 13. The loops of
figures 9 and 13 are identical if the signs of stresses and strains are simply
reversed. Figures 2 to 13 depict the effects of different strain rates and
different types of thermomechanical loadings.

Figure 14 compares the isothermal hysteretic loops (1000 °F) generated by
MARC code with those obtained experimentally by Robinson and Swindeman
(ref. 7). The strain rates are 0.0004 and 0.04/min, respectively and the
strain range +0.32 percent, approximately. The excellent agreement between
the theoretical and experimental loops verifies the correct finite element
implementation of Robinson's model.

Multiaxial Probiem

In order to have a further verification and application of the finite
element implementation of Robinson's constitutive equations, the implementa-
tion was applied to a multiaxial probiem. The problem selected was that of a
thick-walled cylinder subjected to internal pressure under isothermal (800 °F)
conditions. The inner and outer radii of the cylinder were taken to be
0.16 in. (4.06 mm) and 0.25 in. (6.35 mm) and the internal pressure as 3.65 ksi
(25.17 MPa). The results of these computations have been plotted in
figures 15 and 16.

10




R TTE

Figure 15 shows the hoop (circumferential) stress distribution across the
wall of cylinder using the Robinson's model and the FE Code - MARC. The curves
plotted at different values of time show the redistribution of stress as pre-
dicted by Robinson's model. The hoop strain distribution obtained using
Robinson's model and MARC has been plotted in figure 16 for different values
of time.

In order to verify the results from MARC and to ensure the correct
implementation of Robinson's model in the code, the analytical solution for
the problem of a thick, internally pressurized cylinder was obtained. The
following section presents briefly the details of the analytical solution.

ANALYTICAL SOLUTION FOR THICK-CYLINDER
In the following, the subscripts r, ¢, and z refer to the radial, hoop

(circumferential) and axial directions respectively. Symbol, o denotes the
stress and the symbol ¢, strain.

Following Saada (ref. 12), the equation of equilibrium may be written as:

aar ] o
T _ - r (35)

ar r

ASsum1ng the total strain rate to be composed of elastic and inelastic
components, the constitutive relations in the rate form may be written as:

e, = ]E ['r - (;q) N ;z)] + E:“ , (36)
[&¢ - v (&Z N &r>] + él" , (37)
['z - (;r v ;(P)} N ‘;" ) (38)

In equations (36) to (38), E:", ;;n’ and E;ndenote the inelastic strain rates

and

L]

in the respective directions. These rates are obtained using the constitutive
equations of Robinson's model. The dot over a symbol indicates differentia-
tion with respect to time, t.

The strain-rate-compatibility relation is:

de + ¢ -cr
5;9 'SL;f——- =0 , (39)

1



and, the boundary conditions of the problem are:

i

g = -p at the inner radius r

r a

o, = 0 at the outer radius r b . (40)

Using equations (35) to (40), and after some algebraic manipulations, one
may obtain the following expression for the stress rates:

1)

r ;1n _ ;1n 2 2 2 ;in ;ﬁn
g = E_'_ ._L___‘Ldr_i_r__:_izl.b__ _[__‘_S’L_dr
"2 - WO\, r (IS I A r
r 5 5 b
* Eil_:_ggl 15 rE;n dr - LLgmi—égl el ar] (41)
2(V - »%) r (b~ - av)
a a
r ;1n _ ;1n 2 b ;10 ;1n
S - E . r e 4 (r_ra) b T - @ g4
¢ 201 - v9) ; r (b2 _ a%) r? )
r 5 5 b
CEQ=2n L ptn g () |t g ) L B (G
21 - v r \J, (b° - a%) J, (1 -0 ¢
(42)
and
' *in *in b «in «in
. Fo €r —e_(ﬂ b2 € __CL
5, = —= i - dr
(1 - v7) a (b™ - a”) a
b N
, B2 - ;1 . 2] > réln dr + ~—~£—~§" v;:n - (1 - v);ln . (43)
(1 - ») (b™ - a”) 4 (1 - »7)

These equations together with the constitutive equations of Robinson's
model were integrated using the explicit tuler forward method with an automatic
time-step integration strategy proposed by Arya et al. (ref. 13). The integra-
tion yields the stresses and strains at different times and radii of the cylin-
der. The spatial integrals in equations (41) to (43) were evaluated using the
Trapezoidal rule.

The values of the hoop (circumferential) stress across the wall of the
cylinder at different times have been plotted in figure 17. Figure 18 exhibits

12




the values of hoop strain at different times in the cylinder obtained using the
analytical solution. The values of stress and strain from the MARC program
have also been plotted in these figures for comparison of results. The excel-
lent agreement between the MARC and the analytical solutions verifies the
correct implementation of Robinson's model into FE Code - MARC. The finite
element impliementation can therefore be safely employed to carry out the non-
1inear finite element analysis of structures with more complex geometries -
such as gas turbine airfoils subjected to complex thermal and mechanical
loadings in aerospace propulsion engines. The results of such analyses will

be reported subsequently.

SUMMARY AND CONCLUSIONS

1. Robinson's unified viscoplastic model has been successfully implemen-
ted into the Finite Element Code - MARC.

2. Some uniaxtal and multiaxial probliems have been solved using the imple-
mentation. The results obtained for a multiaxial thick cylinder problem using
the implementation compare very well with the corresponding results from the
analytical solution and verify the correct finite element implementation of
Robinson's model.

3. The implementation can now be used for the analysis of more complex
problems, both in geometry and loadings, from aerospace and other industries,
where analytical methods become inapplicable, or are too cumbersome to apply.
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FIGURE 10. - HYSTERESIS LOOP USING ROBINSON’S MODEL-NONISO-
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